

SQL Injection protection in the DataFlex Environment

Page 1 of 4

A compilation by Marcia Booth – Data Access Worldwide

September 2, 2015

Overview
This document provides information about SQL Injection attacks and how the risks associated

with them are mitigated in the DataFlex application environment. When SQL statements written

by a developer are included in an application program for direct execution by an SQL server, the

developer is responsible for making sure that his or her programming style does not let the guard

down for threats like SQL Injection or other risks.

What is an SQL Injection attack?
“SQL injection is an attack in which malicious code is inserted into strings that are later passed to

an instance of SQL Server for parsing and execution. Any procedure that constructs SQL

statements should be reviewed for injection vulnerabilities because SQL Server will execute all

syntactically valid queries that it receives. Even parameterized data can be manipulated by a

skilled and determined attacker.” Source: MICROSOFT

How can SQL Injection affect my DataFlex application?
DataFlex applications using SQL are probably using one of Data Access’ DataFlex Connectivity Kits

which can use SQL in two ways:

As converted DataFlex database requests
DataFlex database requests (find, save, etc.) are controlled by the compiled DataFlex program

and must be converted to SQL requests. For each database request, the DataFlex Connectivity Kit

creates SQL statements with parameters, also known as prepared statements. That means that

those DataFlex generated SQL statements are compiled on the server, then user input is assigned

to the prepared statement as parameters making it much, much harder—almost impossible – to

implement SQL injection attacks from input to a standard DataFlex program.

“The reason that prepared statements help so much in preventing SQL injection is because the

values that will be inserted into an SQL query are sent to the SQL server after the actual query is

sent to the server. In other words, the data input is sent separately from the prepared query

statement. This means that there is absolutely no way that the data input can be interpreted as

SQL, and there’s no way that a hacker could run his own SQL on your application. Any input that

comes in is only interpreted as data, and cannot be interpreted as part of your own application’s

SQL code.” Source: PROGRAMMERINTERVIEW.COM

For example, if the structure of an update instruction for a row in a table is converted to

UPDATE table SET field1 = ?, field2 = ?, … WHERE RECNUM = ?

http://msdn.microsoft.com/en-us/library/ms161953.aspx
http://www.programmerinterview.com/index.php/database-sql/sql-injection-prevention/

SQL Injection protection in the DataFlex Environment

Page 2 of 4

by the DataFlex Connectivity Kit, the statement will then be compiled via an SQLPrepare

operation, then, if successful, the user input data is added to the compiled statement with

SQLBind operations and finally an SQLExecute is performed to complete the update and modify

data in the table.

So for table operations, since the combination of a DataFlex program and Connectivity Kit uses

parametrized queries, i.e. prepared execution, applications are much safer from SQL injection.

As direct statements to be executed by your application
Direct statements are SQL statements embedded by a developer in an application’s program

code. In such a case, the SQL statements are executed as written by the developer assuming they

are valid.

Since direct SQL statements are being written by the developer and not an end user, direct

statements can be safe if written competently and with knowledge of SQL Injection attack

avoidance. However, if SQL code is written in a way that makes it vulnerable to SQL injection, the

application will be then vulnerable, too. In other words, when using embedded SQL, an

application is as safe as the direct statements that the developer writes. The developer must take

responsibility for his own code; DataFlex cannot protect against developers’ risky SQL code.

The only place that DataFlex itself uses SQL directly is through the Data Dictionary (DD) SQL filters

and those filters are set by the developer. To protect against SQL Injection attacks, DataFlex DD

SQL filters have their strings double checked by “escaping them” (see below) on the small chance

that the filter strings are obtained from an end-user via some kind of user input. In DataFlex for

Linux there are no DD SQL filters so the above does not apply.

What can be done to prevent SQL Injection Attacks?
When using embedded SQL and DD SQL filters, developers should avoid allowing user input to be

used directly in SQL statements. If, for example, a program has a ‘search’ input where a user can

compose any text (including SQL code!) as a search string, that text should not be used directly to

compose an SQL statement. The developer should make sure that any such user input is first

escaped and validated, and then used.

To assist developers in this task, DataFlex includes a function called SQLEscapedStr that changes a

string to an "escaped" string that is better suited for being used in direct SQL statements. This

function replaces a single quote with two single quotes, which helps protect against SQL

injection.

In the programming world, escaping means “allowing special characters (like single/double

quotes, percent signs, backslashes, etc.) in strings to be saved so that they remain as part of the

string, and are not misinterpreted as something else. For example, if we want to include a single

SQL Injection protection in the DataFlex Environment

Page 3 of 4

quote in a string (like in the string “it’s”) that gets output to the browser […], then we have to add

a backslash to the single quote so that it is still interpreted as a single quote when generating the

output.” Source: PROGRAMMERINTERVIEW.COM

Also, developers writing embedded SQL should always validate user input by testing data type,

length, format, and range. When implementing precautions against malicious input, developers

should consider the architecture and deployment scenarios of the application. Remember that

programs designed to run in a secure environment can be copied to a non-secure environment.

The following suggestions should be considered best practices for embedded SQL:

 Make no assumptions about the size, type, or content of the data that is received by your

application. For example, developers should make the following evaluations:

o How will your application behave if an errant or malicious user enters a 10-

megabyte MPEG file where your application expects a postal code?

o How will your application behave if a DROP TABLE statement is embedded in a

text field?

 Test the size and data type of input and enforce appropriate limits. This can help prevent

deliberate buffer overruns.

 Test the content of string variables and accept only expected values. Reject entries that

contain binary data, escape sequences, and comment characters. This can help prevent

script injection and can protect against some buffer overrun exploits.

 When working with XML documents, validate all data against its schema as it is entered.

 Never build Transact-SQL statements directly from user input.

 Use stored procedures to validate user input.

 In multitier environments, all data should be validated before admission to the trusted

zone. Data that does not pass the validation process should be rejected and an error

should be returned to the previous tier.

 Implement multiple layers of validation. Precautions you take against casually malicious

users may be ineffective against determined attackers. A better practice is to validate

input in the user interface and at all subsequent points where it crosses a trust boundary.

For example, data validation in a client-side application can prevent simple script

injection. However, if the next tier assumes that its input has already been validated, any

malicious user who can bypass a client can have unrestricted access to a system.

 Never concatenate user input that is not validated. String concatenation is the primary

point of entry for script injection.

 Do not accept the following strings in fields from which file names can be constructed:

AUX, CLOCK$, COM1 through COM8, CON, CONFIG$, LPT1 through LPT8, NUL, and PRN.

http://www.programmerinterview.com/index.php/database-sql/sql-injection-prevention/

SQL Injection protection in the DataFlex Environment

Page 4 of 4

Whenever possible, input that contains the following characters should be rejected:

Input

character
Meaning in Transact-SQL

; Query delimiter.

' Character data string delimiter.

-- Comment delimiter.

/* ... */ Comment delimiters. Text between /* and */ is not evaluated by the server.

xp_ Used at the start of the name of catalog-extended stored procedures, such

as xp_cmdshell.

Source: MICROSOFT TECHNET

For further reading on best practices in validating user input, access SQL INJECTION.

Sources
John Tuohy, CTO, Data Access Worldwide

Martin Moleman, Software Engineer, Data Access Europe

DataFlex and SQL Injection

http://support.dataaccess.com/Forums/entry.php?109-DataFlex-and-SQL-Injection

How to prevent SQL injection attacks?

http://www.programmerinterview.com/index.php/database-sql/sql-injection-prevention/

SQL Injection

https://technet.microsoft.com/en-US/library/ms161953(v=SQL.105).aspx

https://technet.microsoft.com/en-US/library/ms161953(v=SQL.105).aspx
https://technet.microsoft.com/en-US/library/ms161953(v=SQL.105).aspx
http://support.dataaccess.com/Forums/entry.php?109-DataFlex-and-SQL-Injection
http://www.programmerinterview.com/index.php/database-sql/sql-injection-prevention/
https://technet.microsoft.com/en-US/library/ms161953(v=SQL.105).aspx

